R formulas in Spark and un-nesting data in SparklyR: Nice and handy!



In an earlier post I talked about Spark and sparklyR and did some experiments. At my work here at RTL Nederland we have a Spark cluster on Amazon EMR to do some serious heavy lifting on click and video-on-demand data. For an R user it makes perfectly sense to use Spark through the sparklyR interface. However, using Spark through the pySpark interface certainly has its benefits. It exposes much more of the Spark functionality and I find the concept of ML Pipelines in Spark very elegant.

In using Spark I like to share two little tricks described below with you.

The RFormula feature selector

As an R user you have to get used to using Spark through pySpark, moreover, I had to brush up some of my rusty Python knowledge. For training machine learning models there is some help though by using an RFormula 🙂

R users know the concept of model formulae in R, it can be handy way to formulate predictive models in a concise way. In Spark you can also use this concept, only a limited set of R operators are available (+, , . and :) , but it is enough to be useful. The two figures below show a simple example.rformula1

from pyspark.ml.feature import RFormula
f1 = "Targetf ~ paidDuration + Gender "
formula = RFormula(formula = f1)
train2 = formula.fit(train).transform(train)


A handy thing about an RFormula in Spark is (just like using a formula in R in lm and some other modeling functions) that string features used in an RFormula will be automatically onehot encoded, so that they can be used directly in the Spark machine learning algorithms.

Nested (hierarchical) data in sparklyR

Sometimes you may find your self with nested hierarchical data. In pySpark you can flatten this hierarchy if needed. A simple example, suppose you read in a parquet file and it has the following structure:schemaThen to flatten the data you could use:sparkdfIn SparklyR however, reading the same parquet file results in something that isn’t useful to work with at first sight. If you open the table viewer to see the data, you will see rows with: <environment>.nesteddataFortunately, the facilities used internally by sparklyR to call Spark are available to the end user. You can invoke more methods in Spark if needed. So we can invoke the select and col method our self to flatten the hierarchy.rparsedAfter registering the output object, it is visible in the Spark interface and you can view the content.unnested

Thanks for reading my two tricks. Cheers, Longhow.


4 thoughts on “R formulas in Spark and un-nesting data in SparklyR: Nice and handy!

  1. Yeah but the nice thing about SparkR is that you can use apply family of functions for creating UDFs, so you have all R models and functions distributed on Spark.


  2. I tried to remove column from sparklyr dataframe
    have iris data, converted into spark dataframe using sparklyr
    then tried to remove Species column
    but error is coming….may be syntax is not right

    new_iris <- iris_spk[ ,c(-4)]
    Error in iris_spk[, c(-4)] : incorrect number of dimensions


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s